
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Improving test adequacy

assessment by novel JavaScript

mutation operators

by

Muneeb Muzamal

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Computing

Department of Computer Science

2018

file:www.cust.edu.pk
file:www.cust.edu.pk
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

i

Copyright c© 2018 by Muneeb Muzamal

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate my dissertation work to my family, teachers and friends. A special

feeling of gratitude is for my loving parents for their love, endless support and

encouragement.

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Improving test adequacy assessment by novel JavaScript

mutation operators

by

Muneeb Muzamal

MCS153006

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization

(a) External Examiner Dr. Muhammad Uzair Khan FAST, Islamabad

(b) Internal Examiner Dr. Azhar Iqbal CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

May, 2018

Dr. Nayyer Masood Dr. Muhammad Abdul Qadir

Head Dean

Dept. of Computer Science Faculty of Computing

May, 2018 May, 2018

iv

Author’s Declaration

I, Muneeb Muzamal hereby state that my MS thesis titled “Improving test

adequacy assessment by novel JavaScript mutation operators” is my own

work and has not been submitted previously by me for taking any degree from

Capital University of Science and Technology, Islamabad or anywhere else in the

country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Muneeb Muzamal)

Registration No: MCS153006

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Improving

test adequacy assessment by novel JavaScript mutation operators” is solely my

research work with no significant contribution from any other person. Small con-

tribution/help wherever taken has been dully acknowledged and that complete

thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Muneeb Muzamal)

Registration No: MCS153006

vi

Acknowledgements

All worship and praise is for ALLAH (S.W.T), the creator of whole worlds. First

and leading, I would like to say thanks to Him for providing me the strength,

knowledge and blessings to complete this research work. Secondly, special thanks

to my respected supervisor Dr. Aamer Nadeem for his assistance, valuable time

and guidance. I sincerely thank him for his support, encouragement and advice in

the research area. He enabled me to develop an understanding of the subject. He

has taught me, both consciously and unconsciously, how good experimental work

is carried out. Sir you will always be remembered in my prayers. I would also

like to thank all members of CSD research group for their comments and feedback

on my research work. I am highly beholden to my parents, for their assistance,

support (moral as well as financial) and encouragement throughout the completion

of this Master of Science degree. This all is due to love that they shower on me

in every moment of my life. No words can ever be sufficient for the gratitude I

have for my parents. I hope I have met my parents high expectations. I pray to

ALLAH (S.W.T) that may He bestow me with true success in all fields in both

worlds and shower His blessed knowledge upon me for the betterment of all Mus-

lims and whole Mankind.

Aameen

(Muneeb Muzamal)

Registration No: MCS153006

vii

Abstract

Software testing is an essential process to verify that software meets its specifi-

cations and to detect the faults and works as intended. Mutation testing is an

effective software testing technique to assess the adequacy of the test suite. In mu-

tation testing technique, we take the original program as input and make variants

of it by introducing change in each variant by using defined mutation operators.

These variants are called mutants. After creating mutants of the original program,

we execute test cases on each mutant with the objective that these test cases will

detect changes. To identify a change in a mutant, we require executing each mu-

tant with each test case. If a change is detected in a mutant, then it is called

a killed mutant otherwise it is considered alive. The effectiveness of a test suite

depends on the number of mutants killed by it. If frequent number of mutants

is killed then the test suite is deemed as adequate enough to detect changes in

mutants. We measure the adequacy of the test suite by using mutation testing

technique as the ratio of the number of killed mutants to the total number of

mutants. In literature, a lot of research has been done on mutation testing and

number of mutation operators are proposed for Java and other programming lan-

guages. However, mutation operators for JavaScript language are few in numbers

as compared to mutation operators for other programming languages. The focus of

our research is on JavaScript mutation operators. Nowadays, JavaScript is regres-

sively used in the front end of the web applications. To check the adequacy of the

test suite of JavaScript application, mutation testing is an appropriate approach

but the mutation operators for JavaScript are few in number. These JavaScript

mutation operators are used to seed faults in JavaScript source program and cover

some of the specific JavaScript features but there are some features that are not

addressed and require more mutation operators. In this thesis, we propose a set of

new JavaScript mutation operators to address the features not covered by existing

operators. Using our proposed operators, introduced faults are diverse faults that

existing operators faults does not subsume proposed operators faults. We have

implemented our proposed operators in our tool, Mutant Tracer, which is used to

viii

generate mutants of JavaScript source program with existing and proposed oper-

ators, executes test cases on these generated mutants and then generates a status

report of each mutant. For evaluation of our proposed mutation operators, we used

mutation score approach wherein we measure the percentage of the number of the

killed mutants by the total number of mutants. Based on the mutation score, it

is concluded that seed faults of our proposed operator are not subsumed in faults

of existing operators. We have performed the experiments on three different case

studies and have attained 10 to 25 percent mutation score which indicates that

proposed operators introduce different faults that are not detected by test suite

and they require additional test cases.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgements vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiii

Symbols xiv

1 Introduction 1

1.1 Overview . 1

1.2 Mutation Testing . 2

1.2.1 JavaScript Mutation Testing 5

1.3 Problem Statement of Thesis . 5

1.4 Research Questions . 6

1.5 Research Objectives . 6

1.6 Research Methodology . 7

1.7 Research Contribution . 8

1.8 Thesis Organization . 8

2 Literature Review 9

2.1 JavaScript Feature based mutation operators 9

2.1.1 Event driven model . 10

2.1.2 Asynchronous communication 10

2.1.3 DOM manipulation . 11

2.2 JavaScript specific mutation operators 12

2.3 Critical Analysis . 13

2.3.1 Define evaluation criteria . 14

ix

x

2.3.1.1 Tool . 14

2.3.1.2 JavaScript Features 15

2.3.1.3 JavaScript Specific 16

2.4 Gap Analysis . 16

3 Proposed Solution 18

3.1 Proposed Mutation Operators . 19

3.1.1 Changing Variable Datatype 20

3.1.1.1 Case 1: Changing Datatype String to Integer Datatype
(STI) . 20

3.1.1.2 Case 2: Changing Datatype Integer to String Datatype
(ITS) . 20

3.1.1.3 Case 3: Changing Datatype Character to Integer
Datatype (CTI) . 21

3.1.2 Replacing Keyword var with let (VRL) 21

3.1.3 Replacing Keyword let with var (LRV) 22

3.1.4 Insert let keyword(ILK) . 22

3.1.5 Delete let keyword (DLK) 23

4 Implementation 25

4.1 Overview . 25

4.2 Mutant generation process . 26

4.2.1 Algorithm 1 description . 26

4.3 Analyzer Executor process . 27

4.3.1 Algorithm 2 description . 28

4.4 Tool Usage . 29

4.4.1 Mutant Generation Interface 29

4.4.2 Analyzer Executor process 30

5 Results and Discussion 33

5.1 Evaluation Criteria . 33

5.1.1 Redundancy approach . 34

5.2 Case Studies . 35

5.3 Comparison . 38

6 Conclusion and Future Work 46

Bibliography 47

List of Figures

1.1 General Process of Mutation Testing. 3

3.1 Flow diagram of proposed approach. 19

4.1 Tool Architecture . 25

4.2 Algorithm 1 Mutant Generation . 26

4.3 Algorithm 2 Mutant Execution . 28

4.4 Mutant Generator Interface . 31

4.5 Pop-Up message of successfully generation of mutants 31

4.6 Mutant Analyzer Interfacee . 31

4.7 Mutant Status Report . 32

4.8 Result of Existing and Proposed Operators 32

5.1 Graphical representation of Non Redundant faults % of all four
cases studies . 41

5.2 Graphical representation of reverse analysis of all four cases studies 41

5.3 Graphical representation of Simplex Noise effectiveness of proposed
operators . 42

5.4 Graphical representation of Linear Map effectiveness of proposed
operators with T1 . 42

5.5 Graphical representation of Linear Map effectiveness of proposed
operators with T2 . 43

5.6 Graphical representation of Merge Sort Mutation Score 45

xi

List of Tables

2.1 User event feature mutation operators 10

2.2 Description of user event mutation operators 10

2.3 Asynchronous communication feature mutation operators. 11

2.4 Description of Asynchronous communication mutation operators . . 11

2.5 DOM manipulation feature mutation operators 11

2.6 Description of DOM manipulation mutation operators 11

2.7 JavaScript-Specific Mutation Operators 13

2.8 List of all existing JavaScript Mutation operators 14

2.9 Comparison of existing JavaScript approaches 16

3.1 Changing Datatype String to Integer Datatype (STI) 20

3.2 Changing Datatype Integer to String Datatype (ITS) 21

3.3 Changing Datatype Character to Integer Datatype (CTI) 21

3.4 Replacing Keyword var with let (VRL) 22

3.5 Replacing Keyword let with var (LRV) 22

3.6 Insert let keyword(ILK) . 23

3.7 Delete let keyword (DLK) . 24

5.1 Line of code information . 36

5.2 Information of generated mutants 37

5.3 Detailed analysis of existing operator generated mutants 38

5.4 Detailed analysis of proposed operator generated mutants 38

5.5 Results of execution of mutants . 39

5.6 Summary of proposed operators Effectiveness in percentage 39

5.7 Summary of Reverse analysis of mutants 39

5.8 Progressive results of three case studies 40

xii

Abbreviations

STI String to Integer

ITS Integer to String

CTI Character to Integer

VRL Var Replace Let

LRV Let Replace Var

ILK Insert Let Keyword

DLK Delete Let Keyword

MS Mutation Score

T Test Suite

MSn Mutation Score of proposed operators generated mutants

MSe Mutation Score of existing operators generated mutants

xiii

Symbols

Me Set of non equivalent mutants generated by applying existing operators

Mn Set of non equivalent mutants generated by applying new operators

Mek Set of existing mutants killed by T

Mnk Set of new mutants killed by T

MSe Mutation Score of existing operators generated mutants

MSn Mutation Score of new operators generated mutants

xiv

Chapter 1

Introduction

1.1 Overview

In the current technological era, increased human dependence on computer sys-

tems has also increased the demand of the software development. Humans are

becoming more dependent on different types of software to perform certain tasks.

For instance, humans are examined by utilizing some critical types of software

systems such as, health care systems wherein the patients are automatically mon-

itored with the help of machines controlled by software. Therefore, before using

such machines there should be a proper testing of controlling software as they

have a major role to accurately guide the doctors to treat the patient accord-

ingly. Similarly, with help of the internet everyone can access their bank accounts

through the mobile devices and computers to perform the transactions. In such

systems, proper security testing of the software is required to protect the confi-

dential data of users. Software testing is performed to ensure the performance

of a software that whether it works according to the requirements or not Offutt

(1994), Chauhan (2010). A lot of time and resources are consumed during the

software testing phase Srivastava & Kim (2009), Mantere (2003), Rajappa et al.

(2008). Almost half of the resources of the software development are consumed in

software testing Doungsa-ard et al. (2007), Ribeiro et al. (2008). Due to necessity

1

Introduction 2

of testing a software after its development, various studies have been conducted

to make the testing process more cost effective. Two basic testing techniques in-

clude Black box testing and White Box testing. Black box testing is known as

functional testing and white box testing is known as structural testing. Function-

ality requirements are checked in the functional testing, whereas the code testing

is performed in the structural testing Last et al. (2005) Sthamer (1995) Sharma

et al. (2014). The type of testing in which the white and black box testing are

combined is known as Grey Box testing DeMillo et al. (1978). However, by using

the above-mentioned testing techniques, the effectiveness or adequacy of the test

cases cannot be checked as the testing techniques are the coverage based testing

techniques.

1.2 Mutation Testing

Mutation testing (Budd & Angluin 1982) is a code-based testing technique in

which faults are introduced to measure the effectiveness of a test suite. In this

technique, faults are introduced into the program by creating a set of Faulty Pro-

grams (FP) such that FP=FP1,FP2,,FPn (where FPi represents a faulty program

in FP) of original program P. These faulty versions are created from the original

program by applying different mutation operators. Mutation operators: are those

operators that are used to introduce one change in each version of the original pro-

gram. Mutant: when we introduce a change or seed fault in the original program

then this faulty version of the original program is called mutant. Test cases are

used to execute mutants with the goal that every mutant should produce different

output from the original program. The same test case is used to execute both

the original program P and the mutant FPi, then it compares the FPi output

with the P output. Killed mutant: if the output of FPi is different from P then

the mutant is said to be killed. Alive mutant: if the mutant FPi is not killed by

existing test cases then the mutant FPi is said to be alive. Equivalent mutant: if

the mutant FPi is not killable by any of the test cases and it remains always alive

then it is called the equivalent mutant. These mutants are syntactically different

Introduction 3

Figure 1.1: General Process of Mutation Testing.

but semantically equivalent to the original program. Automatic detection of these

equivalent mutants is impossible (Offutt & Pan 1997), (Jia & Harman 2011) as it

is an undecidable problem. After executing all mutants with test cases, mutation

score is calculated, which indicates the adequacy or quality of a test suite. Mu-

tation Score: is ratio of a number of killed mutant by a total number of mutants

except for equivalent mutants (Lipton 1971). Purpose of mutation analysis is to

raise the mutation score indicating that the Test Suite T is sufficient to detect

faults. Figure 1.1 shows the general process of mutation testing.

Mutation testing is used to design new test suites and evaluate the quality of

existing test suites. It can be used to test software at unit level, the integration

level and the system level and it is a form of White box testing. It helps the tester

develop effective test cases. Mutation testing does not test the software directly;

it tests the test suite of the software and helps to improve them. The assumption

is that test suite that detects more faults will also detect more potential faults.

Therefore, they help to improve the quality of the software. Mutation testing has

very high computational cost in terms of mutants compilation and execution with

test suite. Equivalent mutants also involves very high computational cost because

they are syntactically different but semantically equal to the original program.

We execute test cases again and again on these mutants and they always produce

Introduction 4

same output as original program which takes a very high computational cost.

History of a mutation testing can be traced back to 1971 in the study conducted

by Lipton (1971). It has widely being studied since 1971 and first survey related

to mutation testing was conducted in 1989 by DeMillo (1989). Woodward con-

ducted a survey of very specific sub-area of Weak, Strong and Firm mutation

testing approaches (Agrawal et al. 1989a). Different authors presented introduc-

tory chapters on mutation testing in their books (Woodward 1993, Ammann &

Offutt 2016). Offutt and Untch (2001) summarized the history of mutation testing

and briefly described the existing optimization techniques in the survey.

We can use mutation testing for testing software at a unit level, specification level

and integration level (Mathur 2013, Offutt & Untch 2001). It has been applied to

different programming languages like C language (Delamaro et al. 2001, Delamaro

& Maldonado 1999), C# language (Agrawal et al. 1989b, Shahriar & Zulkernine

2008), Fotran language (Derezinska & Szustek 2008), SQL code (Derezinska 2003,

Budd & Sayward 1977) and Java language (Chan et al. 2005), (Chevalley 2001,

Chevalley & Thevenod-Fosse 2003) etc. Mutation testing can also be applied at

the design level to the specification of a program. Examples of design level mu-

tation testing are Statecharts (Ma et al. 2006), (Trakhtenbrot 2007), (Fraser &

Wotawa 2007), Network protocols (Yoon et al. 1998), (Yoon et al. 1998), Finite

State Machines (Sidhu & Leung 1988), (Jing et al. 2008), (Bombieri et al. 2008)

and Web Services (Batth et al. 2007), (Fabbri et al. 1994). We use mutation test-

ing for two purposes: (1) it is most commonly used to assess the adequacy of a

test suite, and (2) it is also used to generate test cases. Most of the time, mutation

testing is used for adequacy assessment but sometimes it is also used to generate

test cases. Although it is an effective technique but still it has certain issues such

as, very high computational cost of executing the enormous number of mutants

against a test suite. The other issues include the equivalent mutant problem (Lee

et al. 2008) and human oracle problem (Xu et al. 2005) which involved a lot of

human effort. Human oracle problem is defined as a process of comparing output

of the original program with the output of a mutant while executing each test

Introduction 5

case. This is the most expensive part of a testing activity. Although it is impossi-

ble to completely overcome such issues, however, various studies have focused on

reducing the computational cost (Weyuker 1982).

1.2.1 JavaScript Mutation Testing

Web applications are client-server software in which user interfaces run in the web

browser and the client can access these interfaces through web browsers. These web

applications are typically developed using diverse frameworks and web components

(Praphamontripong & Offutt 2010), (Offutt 2002). Web components are devel-

oped in different programming languages, including Java Servlets, Active Server

Pages (ASPs), Java Server Pages (JSPs), JavaScripts, AJAX, and PHP. These web

components are integrated dynamically and they may reside in different locations.

In literature, a lot of research has been done on mutation testing and number of

mutation operators are proposed for Java and other programming languages but

not much mutation operators available for scripting languages like JavaScript. The

focus of our research is on JavaScript mutation operators. Nowadays, JavaScript is

regressively used in the front end of the web applications. To check the adequacy of

the test suite of JavaScript application, a number of JavaScript mutation operators

have been proposed for generating mutants. Nishiura K. et al. (2013) proposed

mutation operators according to JavaScript features that are event driven, asyn-

chronous communication, and DOM manipulation. Shabnam, and Karthik (2013)

proposed mutation operators that cover the variable, branch statements, and some

JavaScript specific mutation operators. Purpose of these mutation operators is to

introduce changes in JavaScript program and then observe the behavior of web

application by running the test cases.

1.3 Problem Statement of Thesis

Mutation testing technique is widely being used to measure the effectiveness

of a test suite by applying different mutation operators. However, the existing

Introduction 6

JavaScript mutation operators are not enough to measure the effectiveness of a

test suite. JavaScript specific features like variable type, scope and let keyword

insertion deletion are not fully covered by the existing JavaScript mutation oper-

ators due to which the generated mutants are not adequate. Therefore, the test

suite adequacy is not accurate. There should be some new JavaScript mutation

operators that can play a role in enhancing the adequacy assessment via computing

the adequacy of test suite in a more comprehensive way.

1.4 Research Questions

In this research work, we will implement a new set of JavaScript mutation opera-

tors that will generate the mutants of the original source program. However, the

following questions must be taken into account:

RQ. 1: To what extent the JavaScript specific features are covered by existing

JavaScript mutation operators? To answer this research question, a detailed liter-

ature survey is conducted through which we have identified the existing JavaScript

mutation operators and JavaScript specific features that have not been covered in

the existing JavaScript mutation operators related studies.

RQ. 2: How effective are the proposed JavaScript mutation operators in assessing

adequacy of a test suite? To answer this research question, a number of experi-

ments are performed on different case studies with their respective test suites and

Mutation Score ratio is calculated for proposed and existing operators to perform

the comparison. Focus of this research is to address the aforementioned research

questions.

1.5 Research Objectives

The objective of this thesis is to propose a new set of JavaScript mutation operators

that seed diverse faults in JavaScript source programs that are not seeded by the

existing JavaScript mutation operators.

Introduction 7

1.6 Research Methodology

1. First of all, we have comprehensively reviewed a literature to identify the

existing mutation operators in JavaScript scripting language. After studying

various mutation operators, we have concluded that few JavaScript features

are covered by the existing mutation operators while some of the JavaScript

features are ignored by the mutation operators that are of significance.

2. To overcome the gap of the mutation testing for the JavaScript scripting

language, we have proposed a new set of mutation operators for JavaScript

that will increase the test suite effectiveness for the features not covered by

the current JavaScript mutation operators.

3. The work on the mutation operator implementation is performed as following

steps:

• We have implemented a set of mutation operators for the JavaScript

features that are not covered by the existing JavaScript mutation op-

erators.

• In the next phase, all the data including JavaScript source program

are collected. After collecting the source programs, a test suite of each

source program is created by applying the worst-case boundary value

analysis technique. After data collection, mutants of the source pro-

gram are created by applying existing and proposed JavaScript muta-

tion operators.

• After creating the mutants of the source program, mutation testing

is performed in which each mutant is executed along with an original

source program against all the test cases. Then the output of both orig-

inal and source program is compared. Afterwards, we have counted all

the killed mutants along with the number of test cases that have killed

the mutants of existing and proposed JavaScript mutation operators

separately.

Introduction 8

4. After executing all mutants with test cases, we have evaluated our proposed

operators. We have measured the Mutation Score ratio for existing and

proposed operators generated mutants based upon the data that we maintain

during execution.

1.7 Research Contribution

Research contribution of this thesis is to introduce a set of new JavaScript muta-

tion operators that could be used to introduce faults in JavaScript programs. In

mutation testing, faults are seeded in original source program by using different

mutation operators, thus creating number of mutants of original source program.

Our proposed JavaScript mutation operators have introduced diverse faults that

are currently not seeded by existing JavaScript mutation operators.

1.8 Thesis Organization

Rest of the thesis is organized as follows: second chapter presents the existing

JavaScript mutation operators. Proposed solution is described in third chapter.

Fourth chapter presents the implementation details. Fifth chapter is about re-

sults and discussion and sixth chapter about conclusion and future directions of a

conducted study.

Chapter 2

Literature Review

Mutation testing is considered as one of the very effective testing technique in

software testing for assessing the effectiveness of test suite. In this technique,

multiple copies of the original program are made by introducing a fault in each

copy. Faults are the minor syntactic change in the original program and these

changes are introduced by applying different mutation operators. This faulty

copy of an original program is called mutant. Now, these faults are identified by

executing test cases. Each mutant executes against each test case until the different

output is getting from the original program. This chapter contains an overview of

existing mutation operators which are already proposed by different researchers.

Purpose of these mutation operators is to introduce changes in JavaScript code

and then observe the behavior of web application.

2.1 JavaScript Feature based mutation opera-

tors

Nishiura et al. (2013) defines mutation operators by focusing JavaScript features.

They first conducted feature analysis on JavaScript and then defined mutation op-

erators based on the result of the analysis. They describe three characteristics that

9

Literature Review 10

Table 2.1: User event feature mutation operators

Table 2.2: Description of user event mutation operators

distinguish JavaScript web applications from traditional web applications: event-

driven model, DOM manipulation, and asynchronous communication. Based upon

the features of JavaScript applications, different mutation operators are proposed

by the researchers.

2.1.1 Event driven model

Implementing events in JavaScript programs, developers determine the event, tar-

get, and callback function. The target corresponds to the DOM elements such

as buttons and the callback function is the response of event type. Table 2.1.

shows the mutation operators for user event feature with examples and Table 2.2.

describe these operators.

2.1.2 Asynchronous communication

Enables web applications to continuously accept user request while waiting for

server responses. In asynchronous communication, two main constituents are re-

quest and response. A request contains a destination URL and a request method

(GET, POST). The server processes the request and sends the response to the ap-

plication. Callback functions are invoked according to the status of the response.

Literature Review 11

Table 2.3: Asynchronous communication feature mutation operators.

Table 2.4: Description of Asynchronous communication mutation operators

Table 2.5: DOM manipulation feature mutation operators

Table 2.6: Description of DOM manipulation mutation operators

Table 2.3 shows the mutation operators for asynchronous communication with

example and Table 2.4 describe these operators.

2.1.3 DOM manipulation

DOM manipulation consists of target DOM elements and these elements are se-

lected by their relative position to another element. Table 2.5 shows the mutation

operators for DOM manipulation with example and Table 2.6 describe these op-

erators.

Literature Review 12

2.2 JavaScript specific mutation operators

Mirshokraie et al. (2013) also proposed mutation operators for JavaScript and

they also discuss two main issues due to which mutation testing suffers. First,

there is a high computational cost in executing test suite against a large set of

generated mutants. Secondly, this requires a significant amount of effort in dis-

tinguishing equivalent mutants, which are syntactically different but semantically

identical to the original program (Budd & Angluin 1982). Equivalent mutants

have no observable effect on the applications behavior, so cannot be killed by any

test case. They propose a generic mutation testing approach that guides muta-

tion generation process towards effective mutations, mutations that have a clear

impact on applications behavior and as such are potentially non-equivalent. They

only select, and mutate critical behavior affecting portions of the application code

in their approach. They implement their approach in a tool called MUTANDIS.

They show that on average, 93% of the mutants generated by MUTANDIS are

non-equivalent. In the first part of their approach, they extracted the JavaScript

code from a given web application, executed the extracted code with the exist-

ing test suite, and gathered detailed execution traces of the application under

test. Then they extracted the variable usage frequency, dynamic invariants and

dynamic call graph from execution traces. Using dynamic call graph, rank the pro-

grams function that has an impact on applications behavior. Within the highly

ranked functions, they identified the variables that have a significant impact on

functions outcome, and selectively mutated only those to reduce the likelihood of

equivalent mutants. Based on the proposed approach, they also proposed specific

JavaScript mutation operators that are implemented in MUTANDIS. They tar-

geted variables, branch statements, and specific JavaScript operators to perform

mutation steps. Table 2.7 describe the specific JavaScript mutation operators.

Variables and branch statement generic mutation operator types are applied using

the ranking technique, while JavaScript specific mutation operator type is applied

regardless of the ranking. These JavaScript specific operators are known to be

error-prone.

Literature Review 13

Table 2.7: JavaScript-Specific Mutation Operators

Mirshokraie et al. (2015) describe their previous work in more detail and evalu-

ates their technique using eight JavaScript applications. In this paper, they discuss

their technique called FunctionRank that they developed for reducing the number

of equivalent mutants. This technique selects only those functions that have a

significant impact on applications behavior and then mutation operators are ap-

plied for the mutant generation. They implement their technique in a tool called

MUTANDIS. They apply their technique to different JavaScript applications and

evaluates their technique. They conclude that on average, only 7% of equivalent

were generated by MUTANDIS and more than 70% of equivalent mutants orig-

inated from the branch mutation category. Table 2.8 provide list of all existing

JavaScript mutation operators.

2.3 Critical Analysis

Although, in literature, many JavaScript mutation operators are defined that cov-

ers some JavaScript features, some generic mutation operators and some specific

to the JavaScript. But all of these operators are not sufficient to test the adequacy

of a test suite. In the next section, we will define some parameters for comparison

between existing approaches.

Literature Review 14

Table 2.8: List of all existing JavaScript Mutation operators

2.3.1 Define evaluation criteria

In this section, we will define some parameters for gap analysis in existing ap-

proaches. We divide parameters into three categories, all of these define below in

detail.

2.3.1.1 Tool

Purpose of this category is to check, whether the existing approaches implemented

have their tools and performs all the required steps that are essential for mutation

testing approach. Parameters of this category define below: I. General Mutation

Operators There are so many general purpose mutation operators like ROR, LOR,

and AOR etc. that can be used for many programming languages. Purpose of this

parameter is to check whether all of these general purpose mutation operators used

in existing approaches tool or not. II. Mutation Generation Mutation generation

is an essential part of mutation testing approach. Purpose of this parameter is to

check whether the existing approaches tool performs this essential part or not.

III. Test case execution Test case execution is another essential part of mutation

testing approach. Test cases are executed on generated mutants and original

program with the goal that each mutant generate different output. Purpose of

Literature Review 15

this parameter is to check whether existing approaches tool performs this essential

part or not.

IV. Mutation score Mutation score is another essential part of mutation testing

approach. Mutation score is a percentage of no. of killed mutants by no. of

total mutants. This parameter defines with the purpose that whether existing

approaches tool performs this essential part. V. Equivalent mutants We define

this parameter with the purpose to check that the existing approaches tool avoid

generating equivalent mutant or not.

VI. Bug Severity Bug severity is that how much injected faults are severe. Whether

the injected faults cause the major data loss, major loss of functionality or some

minor loss of functionality. This parameter defines to check existing approaches

tool provide this information about faults.

2.3.1.2 JavaScript Features

We define this category to check whether the existing approaches cover JavaScript

special features. Parameters of this category define below: I. DOM manipulation

We define this parameter to check whether the existing tools handle DOM manip-

ulation. Whether a developer incorrectly selects a DOM element or insert/delete

DOM element at an improper position to identify faults.

II. Event driven We define this parameter to check whether the existing tools

handle the user events or not. III. Asynchronous communication We define this

parameter to check whether the existing tools handle asynchronous communica-

tion. The Client sent a request to the server and after processing request, the

server responded correctly or not.

Literature Review 16

Table 2.9: Comparison of existing JavaScript approaches

2.3.1.3 JavaScript Specific

Purpose of this category is to check whether the existing approaches cover the

common mistakes in JavaScript program that a programmer can do like adding/re-

moving var keyword with a variable in local scope. Variable declaration is done by

using two different keywords and these keywords have different scope in JavaScript

program. JavaScript is a loosely typed programming language in which datatype

of a variable is assigned at the time of initialization of value and wrong datatype

may cause an error in results. We define this category parameters to check whether

existing approaches check scope and datatype of variables.Comparison of existing

approaches are shown in Table 2.9.

2.4 Gap Analysis

A number of JavaScript mutation operators are proposed that are used to seed the

faults in JavaScript program. There are some faults that can occur in a program

that is not currently handled by the existing JavaScript mutation operators. For

example, in JavaScript, let and var are two different keywords that are used to

declare a variable. Variable declare with var keyword has scope to entire function

regardless of block scope whereas variable declares with let keyword has the scope

Literature Review 17

limited to the current block in which it declares. The programmer may declare

variable assuming that this variable has the scope limited to current block but

this may happen variable has scope outside the current block if it declares with

var keyword. There are no such JavaScript mutation operators that can handle

the scope of a variable. As we know, JavaScript is a loosely typed programming

language in which datatype of a variable depends on what type of value is assigned

to that variable. A variable declares and assigns a specific datatype value and later

on, in the program, this may happen the same variable can be assigned another

type of a value by the programmer that can cause an error in the result. There

are no such JavaScript mutation operators that can handle these kinds of faults in

the program. There are also some JavaScript specific window objects that are not

currently handled by the existing JavaScript mutation operators. This requires a

new set of JavaScript mutation operators that will seed these kinds of faults in

the program and improve the assessment of test suite.

Chapter 3

Proposed Solution

Mutation Testing is an effective testing technique in software testing domain to as-

sess the effectiveness of test suite. Many researchers have presented the mutation

operators for the JavaScript that have been discussed in chapter 2 in detail and

Table 2-8 provides a list of all existing JavaScript mutation operators. We have

seen in the previous chapter that there are some faults that can arise in JavaScript

program that are currently not handled by the existing JavaScript mutation oper-

ators. Some of the problems have been discussed in section 2.4. Therefore existing

JavaScript mutation operators are not sufficient to assess the effectiveness of test

suite. We have proposed a new set of JavaScript mutation operators to improve

assessment of test cases by considering the faults associated with the JavaScript

program. An overall overview of our approach is depicted in Figure 3.1.

1. In mutant generator process, our tool takes JavaScript program as input

then generates mutants of JavaScript program with the selected JavaScript

mutation operators.

2. In mutant executor process, our tool executes mutants with test cases to

check if the test cases detect faults that are seeded in the mutants by using

existing and proposed mutation operators. After executing all mutants with

test cases, in the next phase, for comparison, we will measure the Mutation

18

Proposed Solution 19

Figure 3.1: Flow diagram of proposed approach.

Score ratio for existing and proposed operators generated mutants based

upon the data that we maintain during execution.

3. In result analyzer process, measure the Mutation Score ratio based on the

results that we collect in the previous phase. Our tool generates a status

report of mutants that which mutants remain alive and which mutants killed

by whom test cases.

For expose faults in JavaScript program, in next section, we proposed a set of

JavaScript mutation operators that will introduce diverse faults that existing op-

erators unable to introduce such faults. In the next section, we provide detail of

our proposed JavaScript operators.

3.1 Proposed Mutation Operators

The new type of mutants generated from the original program code with the

proposed mutation operators are explained below with the examples.

Proposed Solution 20

Table 3.1: Changing Datatype String to Integer Datatype (STI)

3.1.1 Changing Variable Datatype

The data type of a variable is defined by the value assigned to that variable, a

common mistake can be done by assigning different data type value to the same

variable. The mutation operator can further be categorized based on the 3 types

of cases:

3.1.1.1 Case 1: Changing Datatype String to Integer Datatype (STI)

The mutant of the original program is created by finding the variable of the String

Data type and changing it to the integer data type. This type of error can arise if

the programmer uses integer literal instead of a string literal. If the programmer

uses string value the output will be accurate as desired but if the programmer uses

integer literal then the outcome may be incorrect and faulty. Table 3.1 demon-

strated the above scenario with example. Therefore, to handle such faults we need

this operator for seeding such faults.

3.1.1.2 Case 2: Changing Datatype Integer to String Datatype (ITS)

The mutant is created for the original program by changing the Integer Datatype

to the String Datatype. This type of error can arise if the programmer uses

string literal instead of an integer literal. If the programmer uses integer literal

the output will be accurate as desired but if the programmer uses string value

then the outcome may be incorrect and faulty. Table 3.2 demonstrated the above

scenario with example. Therefore, to handle such faults we need this operator for

seeding such faults.

Proposed Solution 21

Table 3.2: Changing Datatype Integer to String Datatype (ITS)

Table 3.3: Changing Datatype Character to Integer Datatype (CTI)

3.1.1.3 Case 3: Changing Datatype Character to Integer Datatype

(CTI)

Character datatype in the program will be changed with the integer data type to

produce a mutant from the original program. This type of error can arise if the

programmer uses integer literal instead of a character literal. If the programmer

uses a character literal the output will be accurate as desired but if the program-

mer uses integer literal then the outcome may be incorrect and faulty. Table 3.3

demonstrated the above scenario with example. Therefore, to handle such faults

we need this operator for seeding such faults.

3.1.2 Replacing Keyword var with let (VRL)

The scope of the variable that declares with var keyword is entire function regard-

less of block scope. A common mistake is assuming that var keyword declares a

variable with the scope limited to the current block in which it declares but it has

scope to the complete function and outside this block same variable value will be

used. By replacing var with let keyword, to limit the scope of a variable to the

current block and outside this block global variable value will be used. Table 3.4

demonstrated the above scenario with example.

Proposed Solution 22

Table 3.4: Replacing Keyword var with let (VRL)

Table 3.5: Replacing Keyword let with var (LRV)

3.1.3 Replacing Keyword let with var (LRV)

The scope of a variable that declares with let keyword is specific to the current

block in which in declare. A programmer declares a variable in a specific block

with let keyword to limit the scope of this variable and outside the block use the

global variable value. By replacing let with var which extends the variable scope

to complete function instead of the current code block which may cause an error

in the result. Table 3.5 demonstrated the above scenario with example.

3.1.4 Insert let keyword(ILK)

If developer assumes to declare a variable inside a function as a local scope to

prevent overriding of a global variable. A common mistake is to forget to add

let keyword with variable inside a function which overrides global scope variable

value and that value can cause an error in the result if this global variable used

outside the block. By adding let keyword with the variable in block scope can

limit the scope as well as prevent overriding the global scope variable value. Table

3.6 demonstrated the above scenario with example. By adding let keyword with

variable in block scope can limit the scope as well as prevent overriding the global

scope variable value.

Proposed Solution 23

Table 3.6: Insert let keyword(ILK)

3.1.5 Delete let keyword (DLK)

A variable declares in global scope and uses this variable inside a function. A

common mistake can be done by adding let keyword with the variable name that

declares a new variable in block scope. This will prevent overwriting global variable

in block scope and outside this block original value of a global variable will be used

that can cause an error in the result. By deleting let keyword from variable name

inside block scope to prevent the declaration of a new variable as well as allow

overriding global scope variable in a block. Table 3.7 demonstrated the above

scenario with example.

By defining the above JavaScript mutation operators we can able to handle JavaScript

specific faults that a programmer can be done while programming and these faults

cannot handle the existing mutation operators. With the proposed mutation op-

erators, a different type of faults will be seeded in the program which includes

variable scope and type faults. As we know variable declaration can be done in

JavaScript with two different keywords (let, var) and both of them have different

scope. With our proposed operators, we can seed faults that change the scope of a

variable by replacing var keyword with let and vice versa. Similarly by deleting/in-

serting these keywords can also cause the change in scope of a variable. Change

in scope of a variable can cause an error in the result. As we know, JavaScript is

a loosely typed programming language and this may happen by mistake program-

mer assign another type of the value to same variable which may cause an error in

the result. With our proposed mutation operators, we can also seed these kinds of

faults that can change the type of a variable by assigning a different type of value

Proposed Solution 24

Table 3.7: Delete let keyword (DLK)

to the same variable. By combining these proposed mutation operators with the

existing mutation operators, the assessment of test cases will be improved.

Chapter 4

Implementation

4.1 Overview

This chapter contains implementation details of the proposed technique, we have

developed a GUI based desktop application and implementation is done using the

Object Oriented Paradigm using the JAVA language. IDE used to develop the

software is NetBeans. Generic Software Architecture of tool is shown in Figure

4.1.

Figure 4.1: Tool Architecture

25

Implementation 26

Figure 4.2: Algorithm 1 Mutant Generation

4.2 Mutant generation process

The working of the tool starts with the main menu presented as a GUI to the

user which asks for the JavaScript code as an input for mutation testing. Then

this input JavaScript program file pass to Mutant Generator component. Multiple

mutants are generated for the JavaScript code based upon selected operators. The

algorithm used for the mutant generation is explained in Figure 4.2

4.2.1 Algorithm 1 description

To generate mutants of given program, first, count how many time selected mu-

tation operator(s) will apply for the mutant generation (lines 1-5). While loop

continuously read file line by line until the end of file found and in each itera-

tion of while loop, if statement, check whether the current line contains selected

operator condition or not (lines 2-3). If the condition true then increment count

value by 1 (line 4). After that mutants generation process begins and a number of

mutants will be created as many as the value of count variable (lines 6-20). The

outer while loop executes until script value is less than the count variable value

and in each iteration of this loop, every time new file create with incremented

Implementation 27

script number (lines 8-9). Inner while loop of our algorithm, read original code

from the file line by line for replacement (line 10). If statement (line 11), check

whether the current line contains selected operator condition or not. If the con-

dition true then check the sequence in which the replacement will have to apply

(lines 12-13). For example, if tester select var replacing let mutation operator and

var keyword found more than once in the program. Then in each mutant, replace

var keyword that already not have been replaced for the creation of new mutant.

If the condition is false then found the next appearance of operator condition that

not already mutated (line 15). In line 16, write each line on mutant file to make

a copy of the original program (line 16). At the end of the outer loop, n number

of mutants will be generated.

4.3 Analyzer Executor process

After generating mutants of the source program, next phase is to execute these

generated mutants with test cases that are developed by the tester for test the

source program. Our tool takes test cases as input in a specific format and then

execute each mutant with all test cases. Same test case executes both the original

program and the mutant with the goal that each mutant should produce different

output from the original program. The algorithm used for the mutant generation

is explained in Figure 4.3

For the execution of JavaScript program using Java, we use Java ScriptEngine,

ScriptEngineManager, and Invocable APIs. ScriptEngineManager provides the

mechanism for ScriptEngine to initiate engine. ScriptEngine provides scripting

functionality and it includes methods that execute scripts. Invocable interface

implemented by ScriptEngine and invocableFunction of the Invocable interface is

used to call functions that are defined in the script. Our algorithm read one test

case in each iteration, then execute all mutants along with the original program

and compare the result of both. Based upon the result, calculate the assessment

of proposed operators.

Implementation 28

Figure 4.3: Algorithm 2 Mutant Execution

4.3.1 Algorithm 2 description

For the execution of mutants with test cases, we first initialize engine object by

calling ScriptEngineManager API function (getEngineByName) and this function

will create script engine for JavaScript, in our case (line 1 and 2). Next, initialize

folder object with mutants folder path, then get all code flies from this folder and

place them in file array (line 3 and 4). Next, we initialize FileReader object by

assigning original program code and then this object will be used to execute the

Implementation 29

original program (line 6). Outer loop read test cases one by one from test case file

and execute all mutants with each test case (line 8). The inner loop will execute

until the scriptNo value is less than the total number of generated mutants (line

9). In this loop, we first place the mutant code in FileReader object one by one in

each iteration of an inner loop from File array (line 10). Then execute mutant code

by using eval method of ScriptEngine API. This eval method is used to execute

the specified script (JavaScript in our case) by passing script as an argument to

that method (line 11). Our algorithm uses invocakeFunction method of Invocable

API that invokes a function from the original code and mutated code script and

execute invoked function with test case values (line 12, 13). After evaluating

both script codes, compare the results that returned. If the results are different

(mutant killed) then add the mutant name to the killed status list and increment

the killed mutant count as well as the killed test case count. After that write this

mutant name on status report along with test case which killed mutant (line 14,

19). All the remaining mutants that are not in the killed status list, add in the

alive status list and write alive status of all these mutants on a status report (line

22, 26). After executing and maintaining the status of each mutant, calculate the

proposed operator assignment based on the record that we collect while executing

all mutants with test data (line 27).

4.4 Tool Usage

This section includes all the user interfaces of our tool.

4.4.1 Mutant Generation Interface

To start creating the mutants for the JavaScript program, our tool will take

JavaScript program as input and then tester select mutation operators that will

apply on JavaScript source code to generate mutants of a source program. Figure

4.4 shows the mutant generation interface. In the first step, the tester will provide

Implementation 30

JavaScript source code and then select mutation operators for which he/she want

to generate mutants. In our tool, we also provide existing JavaScript mutation

operators along with our proposed JavaScript mutation operators. A tester can

also select existing JavaScript mutation operators for the mutant generation. Af-

ter selection of operators tester will press Mutant Generator button to generate

mutants. A pop-up message will be shown on successful generation of mutants as

shown in Figure 4.5. After generation of mutation, next step is to execute test

cases on these generated mutants and original program.

4.4.2 Analyzer Executor process

After generating mutants of a source program, next phase is to execute these

generated mutants with test cases that are developed by the tester for test the

source program. Our tool takes test cases as input in a specific format and then

by clicking Execute Mutants button, execute each mutant with all test cases.

Mutant execution interface is shown in 4.6. List of all killed and live mutants are

also shown on the interface.Our tool also keeps the record that one test case killed

how many test cases and based upon this record at the end of the execution process,

generate a status report that one test case killed which mutant(s) and also mention

the mutant name that remains alive as shown in Figure 4.7.After executing all

mutants with test data set, list of all killed and live mutants are also shown

on executor/analyzer interface. Based on the data of killed and live mutants,

assessment of proposed operators in terms of Mutation Score ratio calculate and

shown on executor/analyzer interface. Names of alive and killed mutants, as well

as the assessment in terms of Mutation Score, are shown in Figure 4.8

Implementation 31

Figure 4.4: Mutant Generator Interface

Figure 4.5: Pop-Up message of successfully generation of mutants

Figure 4.6: Mutant Analyzer Interfacee

Implementation 32

Figure 4.7: Mutant Status Report

Figure 4.8: Result of Existing and Proposed Operators

Chapter 5

Results and Discussion

In this section, we have discussed experiments result, which we have performed on

different JavaScript source code. Using existing and proposed JavaScript mutation

operators, we generated mutants of original JavaScript source code and then using

dataset we execute mutants along with original source code. During execution we

maintain a record of each mutant (killed or alive) and based upon this record, we

compare our proposed JavaScript mutation operators with existing operators that

our proposed operators does not generate mutant or seed such faults which are

redundant.

5.1 Evaluation Criteria

For evaluation of our proposed JavaScript mutation operators, we used mutation

score based approach. We execute existing and proposed operators generated

mutants with the test suite and then we calculate mutation score for both existing

and proposed operators mutants separately. After that, we calculate usefulness of

proposed operators that confirms how effective or useful our proposed operators in

introducing diverse faults. The following formulas are used to calculate mutation

score and usefulness of mutants: T=Test Suite

Me =Set of non equivalent mutants generated by applying existing operators

33

Results and Discussion 34

Mn =Set of non equivalent mutants generated by applying new operators

Mek=Set of existing mutants killed by T

Mnk= Set of new mutants killed by T

MSe=Mutation Score of existing operators generated mutants

MSn=Mutation Score of new operators generated mutants

We calculate Mutation Score for both existing and proposed operators generated

mutants by following formula:

5.1.1 Redundancy approach

Redundancy is define as, the faults that seeded by our proposed operators, they

are similar kind of faults that seeded by existing operators then we say proposed

operators faults are redundant. To check the redundancy, we execute both set of

mutants (generated with existing and proposed operators) with existing test suite

and then measure the redundancy ratio. For calculation of redundancy we used

following formula:

MSe =
Mek

Me

,MSn =
Mnk

Mn

(5.1)

CreatetsuchthatMek = MethereforeMSe = 1 (5.2)

We have created test suite T when we execute the existing operators generated

mutants with this test suite, the MSe is equal to the probability 1 which means

that all the mutants that are in set Me have been killed with T. This implies that

if set Me and Mek are both equal then MSeis 1. To find the usefulness of new

mutants, we calculate the mutant score with new mutants and same test suite by

following formula:

Usefulness = 1 −MSn (5.3)

If the Usefulness value closed to 0 then this intimates that these mutants are easy

to kill. These mutants have similar kind of faults with existing mutants faults. If

the Usefulness value closed to 1 then this intimates that these mutants are hard

to kill. These mutants have diversity in faults and are useful to measures the

Results and Discussion 35

adequacy of a test suite. The faults seeded by our proposed operators are not

subsumed in existing operators faults and they require new test cases to kill.

5.2 Case Studies

For evaluating our proposed JavaScript mutation operators, we have used four dif-

ferent JavaScript source programs. For the selection of source programs, different

sources were searched including open source project repositories, and SIR (Soft-

ware Infrastructure Repository). From these, repositories, we have found a lot of

applications developed in JavaScript language. From these we select two applica-

tions named ECharts and Tech interview handbook. ECharts is a powerful and

visualization library that provides an easy way to add interactive and highly cus-

tomizable charts to your products. Tech interview handbook has practical content

related algorithms that can help for technical interviews. This handbook pretty

new and only have content related sorting algorithms with their code and expla-

nation. This handbook also covers contents beyond the typical algorithmic coding

questions. Mutation testing is very complex if we consider whole application due

to a large number of mutants. So our focus in this thesis on method level muta-

tion testing and we looked for reasonably sized methods in these applications. We

select methods from these applications that perform some computation. Meth-

ods that have some input parameters and after performing computation returned

some output. The source codes of these programs are given as an input to the tool

described in Chapter 4 to generate mutants using selected (existing and proposed)

JavaScript mutation operators and for execution of original and mutant programs

using the test suite generated by Worst case boundary value analysis. Based on

the data collected after execution, compare the proposed operators with existing

operators using Mutation Score approach. We have used Simplex Noise (yangshun

2017), Linear Map (ecomfe 2016a) and Merge Sort (ecomfe 2016b) as example pro-

grams for evaluating our approach. A brief description of each program is given

below:

Results and Discussion 36

Table 5.1: Line of code information

1. Simplex Noise: Simplex Noise algorithm is used for constructing n-

dimensional noise functions and this algorithm is the extension of Perlin

Noise algorithm. Perlin Noise algorithm is used to produce natural ap-

pearing textures on computer generated surfaces for visual effect on motion

pictures. Purpose of Simplex Noise algorithm is same as Perlin Noise but it

uses a simpler space filling and alleviates some problems with Perlin Noise.

Simplex Noise method takes coordinate (x and y in our example) as input

and returned final noise value.

2. Merge Sort:Merge Sort is one of the divide and conquer technique for

sorting an unsorted array. This algorithm is one of the most popular sorting

algorithm and most commonly used for sorting arrays. It first divides the

array into sub-arrays and then combines these sub-arrays in a sorted manner.

Merge Sort method take an unsorted array as input and return a sorted array.

3. ATM Machine:In this method allow the customer to complete the basic

transactions like balance query, deposit amount and withdraw amount etc.

4. Linear Map: Linear Map method map a value from domain to range. This

method takes domain values in an array, range values in an array, clamp value

as Boolean and a number as input. Based upon the following conditions map

domain value to the range value:

C1: clamp == true

C1a: number <= domain [1]

C1b: number >= domain [0]

C2: clamp == false

C2a: number == domain [1]

Results and Discussion 37

Table 5.2: Information of generated mutants

C2b: number == domain [0]

Based on the above conditions returned respective range value to domain.

Table 5.1 contain information about the line of code of each application.

We have generated mutants of all these programs by applying existing and

proposed mutation operators. Table 5.2 gives complete information about

the generated mutants that each operator generate how many mutants.

After generating mutants, we identify non-equivalent mutants for execution. For

Simplex Noise Problem, we identify existing operators generated 169 non-equivalent

mutants out of 214 and proposed operators generated 51 non-equivalent mutants

out of 73. Similarly, we identify non-equivalent mutants for other three prob-

lems. A detailed analysis of generated mutants with existing JavaScript mutation

operators and proposed JavaScript mutation operators are describe in Table 5.3

and Table 5.4. Next step is to execute these non-equivalent mutants along with

original program with the test suite. We generated test suites for Simplex Noise

and Linear Map programs by using Worst case boundary value analysis. We have

found test suite for Linear Map problem in ecomfe (2016c), so we also used this

test suite along with our generated test suite for experiments. We randomly gen-

erate test cases for Merge Sort program because this program has one parameter

that is unsorted array, so we randomly generate different array values. We exe-

cute mutants of each program with their respective test suite and collect the data

after executing mutants. Table 5.5 gives complete information about how many

non-equivalent mutants generated in total with existing and proposed operators

Results and Discussion 38

Table 5.3: Detailed analysis of existing operator generated mutants

Table 5.4: Detailed analysis of proposed operator generated mutants

and how many existing and proposed operators non-equivalent generated mutants

killed.

5.3 Comparison

After executing mutants with test suites compares the existing mutation operators

with proposed mutation operators based upon the result that we extract from exe-

cution phase. We calculate MS of proposed operators generated mutants and then

calculate the effectiveness of our proposed operators. Complete results of all four

case studies with MS percentage and effectiveness of our proposed operators in

percentage are shown in Table 5.6 and the progressive results are shown in Table

5.8.

We also create test cases for reverse analysis that kill all proposed operators gen-

erated mutants to get 100% MS with these test cases. Then we execute existing

operators generated mutants with these test cases to analyze how many faults

are detected with these test cases. Table 5.7 shows the reverse analysis with the

existing operators generated mutants.

Results and Discussion 39

Table 5.5: Results of execution of mutants

Table 5.6: Summary of proposed operators Effectiveness in percentage

Table 5.7: Summary of Reverse analysis of mutants

Our experiments show that the existing test suite killed all non-equivalent mutants

that generated with existing mutation operators and we get 100% mutation score

for all three case studies. When we execute the same test suite on proposed muta-

tion operators generated non-equivalent mutants, mutation score percentage not

much high which indicates that these mutants have different faults than existing

mutation operator seeded faults. These mutants require additional test cases to

detect these seeded faults. Here one thing is very important if existing operators all

non-equivalent mutants are not killed with the test suite, then we cannot conclude

that proposed operators seeded diverse faults. So it is necessary, we have such test

cases that must kill all existing operators mutants and if this test suite detects

few faults that seeded with proposed operators then we can say that the rest of

Results and Discussion 40

Table 5.8: Progressive results of three case studies

faults are not redundant. They are of different type and very useful faults. In our

experiments, Simplex Noise problem only have 13.7% MS of proposed operators

which indicates that the maximum number of faults that seeded are diverse faults

and require additional test cases to kill. Other two case studies also show similar

kind of percentage which endorses the usefulness of our proposed operators. The

graphical representation of effectiveness in percentage of all four case studies is

shown in Figure 5.1.

From reverse analysis we get high percentage of MS with existing operators gen-

erated mutants which indicate that the faults seeded by the proposed operators

subsume some of the existing operators seeded faults. For Simplex Noise problem,

29% effectiveness of existing JavaScript mutation operators indicate that most of

the seeded faults are redundant because test cases that detect faults in proposed

mutation operators generated mutants, also detect faults in existing mutation op-

erators generated mutants. This shows the redundancy of faults with existing

mutation operators. All other cases studies show similar results which ensures the

partial subsumption of existing operators’ faults by proposed operators’ faults.

Graphical representation of reverse analysis of mutants is shown in Figure 5-2.

Results and Discussion 41

Figure 5.1: Graphical representation of Non Redundant faults % of all four
cases studies

Figure 5.2: Graphical representation of reverse analysis of all four cases studies

In Simplex Noise problem, when we gradually increase the number of test

cases, the MS percentage of existing operators also increases. After executing 24

test cases, all mutants killed and we get 100% MS percentage of all non-equivalent

existing operators mutants whereas the proposed operators mutation score is only

13.6%, 6 test cases only killed 7 out of 51 non-equivalent mutants. This indicates

the diversity in faults that seeded by our proposed operators. The graphical repre-

sentation of Simplex Noise effectiveness of proposed operators is shown in Figure

??. In Linear Map problem, when we gradually increase number of test cases, the

existing operators MS percentage increases and we get 100% MS percentage after

Results and Discussion 42

Figure 5.3: Graphical representation of Simplex Noise effectiveness of pro-
posed operators

Figure 5.4: Graphical representation of Linear Map effectiveness of proposed
operators with T1

executing 200 test cases. Whereas proposed operators MS percentage is only 20%,

only two mutants killed that is generated with proposed operators when we exe-

cute first 100 test cases, after that no mutant killed with any test case. This also

shows the diversity in faults that seeded by our proposed operators. The graphical

representation of Linear Map effectiveness of proposed operators with test suite

1 is shown in Figure 5.4. When we evaluating Linear Map problem with test

suite 2, the existing operators MS percentage rapidly increasing as we increase the

number of test cases and we get maximum MS percentage that is 100% when we

Results and Discussion 43

Figure 5.5: Graphical representation of Linear Map effectiveness of proposed
operators with T2

execute all test cases of this test suite. Whereas we get 0% of proposed operators

Mutation Score ratio at the execution of 18 test cases. After that only one mutant

is killed by one test case and get maximum MS percentage that is 20%. This en-

dorses that existing operators seeded faults does not subsume proposed operators

seeded faults, so additional test cases require to detect these faults. The graphical

representation of Linear Map effectiveness of proposed operators with test suite 2

is shown in Figure 5.5. In Merge Sort problem, when we gradually increase the

number of test cases and execute first 48 test cases out of 60, the MS percentage

of existing operators rapidly increasing and we get maximum MS that is 100%.

Whereas the proposed operators MS ratio is only 25%, only 2 test cases killed 3

mutants and hence additional test cases require to detect faults. The graphical

representation of Merge Sort effectiveness of proposed operators is shown in Figure

5.6.

By comparing MSn with MSe, it can be concluded that proposed mutation op-

erators do not introduce faults that existing mutation operators introduce. Our

proposed operators are useful that they introduce such faults that currently not

introducing existing JavaScript mutation operators. For detection of such faults,

Results and Discussion 44

we require additional test cases. By combining our proposed operators with exist-

ing operators, assessment of test cases can be measured in a better way. Through

the detailed literature survey and experimentation of different case studies, we are

able to answer our research questions described in Chapter 1 as follows:

RQ. 1: To what extent the JavaScript specific features are covered by existing

JavaScript mutation operators?

A number of JavaScript mutation operators have been proposed in literature that

are used to introduce faults in JavaScript source program. We have seen some of

the existing mutation operators cover JavaScript specific features like event, asyn-

chronous communication, and DOM manipulation etc. we have also seen some of

the operators that proposed by Mirshokraie S. et al. (2013), they cover JavaScript

specific faults like removing the global search flag, removing integer based argu-

ment and set time out function etc. after detailed study we have found some faults

that are not seeded by existing JavaScript mutation operators. In JavaScript, we

can declare variable with two different keywords and both keywords have different

scope. There are no such JavaScript mutation operator that can handle the scope

of variable. JavaScript is a loosely typed programming language and datatype of

a variable depends on what type of value is assigned to that variable. A variable

declares and assign a specific datatype value and later on in the program this may

happen the same variable can be assigned another type of value by the program-

mer that can cause error in the result. There are no such JavaScript mutation

operators that can handle these kind of faults in the program. There are also

some JavaScript specific window objects that are not currently handled by the

existing JavaScript mutation operators.

RQ. 2: How effective are the proposed JavaScript mutation operators in assessing

adequacy of a test suite?

In this research work, we proposed JavaScript mutation operators that are used

to seed faults that are not currently seeded by existing mutation operators. By

using three different case studies, we generate mutants with existing and proposed

Results and Discussion 45

Figure 5.6: Graphical representation of Merge Sort Mutation Score

mutation operators. Then execute test cases on both existing and proposed oper-

ator mutants. These test cases killed all non-equivalent existing operator mutants

and we have seen that killed few proposed operators mutants. The main objective

of our proposed operators was to seed diverse faults and through experiments we

have seen that proposed operators mutant killed ratio is very less which indicate

the diversity of faults than existing operators faults. Only 10 to 25% killed ratio

of proposed operators mutants indicate that additional test cases require to kill

remaining mutants.

By comparing Redundancy Ratio proposed JavaScript mutation operators with ex-

isting JavaScript mutation operators, it can be concluded that proposed mutation

operators does not introduces faults that existing mutation operators introduces.

Our proposed operators are useful that they introduces such faults that currently

not introducing by existing JavaScript mutation operators. By combining our pro-

posed operators with existing operators, assessment of test cases can be measuring

in a better way.

Chapter 6

Conclusion and Future Work

After reviewing literature, we conclude that existing JavaScript mutation opera-

tors are less effective in terms they do not cover some JavaScript specific features.

To deal with this challenge, we proposed a new set of JavaScript mutation op-

erators that cover the features that are not yet covered by existing JavaScript

mutation operators. Our proposed operators introduced diverse faults that ex-

isting operators faults does not subsume proposed operators faults. We perform

experiments on different case studies and the results indicate that the faults seeded

by proposed mutation operators they are not redundant. Proposed operators MSn

is very less, only 10 to 25% MSn of proposed operators mutants indicate that these

mutants have diversity in faults than existing operators introduced faults.Through

experiments on different case studies, we concluded that proposed operators are

useful operators, they introduce faults that are not seeded by existing JavaScript

mutation operators. By combining these operators with existing operators, the

assessment of test cases will be improved.

After successful experimentation of the proposed JavaScript mutation operators,

we plan to find out more advanced features of JavaScript that are not yet covered

by more detailed literature survey. We also have the plan to investigate a new al-

gorithm that reduces the computational cost (kill mutant efficiently) of proposed

operators.

46

Bibliography

Agrawal, H., DeMillo, R., Hathaway, R., Hsu, W., Hsu, W., Krauser, E., Martin,

R. J., Mathur, A. & Spafford, E. (1989a), Design of mutant operators for the

c programming language, Technical report, Technical Report SERC-TR-41-P,

Software Engineering Research Center, Department of Computer Science, Pur-

due University, Indiana.

Agrawal, H., DeMillo, R., Hathaway, R., Hsu, W., Hsu, W., Krauser, E., Martin,

R. J., Mathur, A. & Spafford, E. (1989b), Design of mutant operators for the

c programming language, Technical report, Technical Report SERC-TR-41-P,

Software Engineering Research Center, Department of Computer Science, Pur-

due University, Indiana.

Ammann, P. & Offutt, J. (2016), Introduction to software testing, Cambridge

University Press.

Batth, S. S., Vieira, E. R., Cavalli, A. & Uyar, M. Ü. (2007), Specification of timed

efsm fault models in sdl, in ‘International Conference on Formal Techniques for

Networked and Distributed Systems’, Springer, pp. 50–65.

Bombieri, N., Fummi, F. & Pravadelli, G. (2008), A mutation model for the sys-

temc tlm 2.0 communication interfaces, in ‘Proceedings of the conference on

Design, automation and test in Europe’, ACM, pp. 396–401.

Budd, T. A. & Angluin, D. (1982), ‘Two notions of correctness and their relation

to testing’, Acta Informatica 18(1), 31–45.

Budd, T. & Sayward, F. (1977), ‘Users guide to the pilot mutation system’, Yale

University, New Haven, Connecticut, Technique Report 114.

47

References 48

Chan, W., Cheung, S. & Tse, T. (2005), Fault-based testing of database applica-

tion programs with conceptual data model, in ‘Quality Software, 2005.(QSIC

2005). Fifth International Conference on’, IEEE, pp. 187–196.

Chauhan, N. (2010), Software Testing: Principles and Practices, Oxford university

press.

Chevalley, P. (2001), Applying mutation analysis for object-oriented programs

using a reflective approach, in ‘Software Engineering Conference, 2001. APSEC

2001. Eighth Asia-Pacific’, IEEE, pp. 267–270.

Chevalley, P. & Thevenod-Fosse, P. (2003), ‘A mutation analysis tool for java pro-

grams’, International journal on software tools for technology transfer 5(1), 90–

103.

Delamaro, M. E., Maidonado, J. & Mathur, A. P. (2001), ‘Interface mutation: An

approach for integration testing’, IEEE transactions on software engineering

27(3), 228–247.

Delamaro, M. & Maldonado, J. C. (1999), Interface mutation: Assessing testing

quality at interprocedural level, in ‘Computer Science Society, 1999. Proceed-

ings. SCCC’99. XIX International Conference of the Chilean’, IEEE, pp. 78–86.

DeMillo, R. A., Lipton, R. J. & Sayward, F. G. (1978), ‘Hints on test data selection:

Help for the practicing programmer’, Computer 11(4), 34–41.

Derezinska, A. (2003), Object-oriented mutation to asses the quality of tests, in

‘null’, IEEE, p. 417.

Derezinska, A. & Szustek, A. (2008), Tool-supported advanced mutation approach

for verification of c# programs, in ‘Dependability of Computer Systems, 2008.

DepCos-RELCOMEX’08. Third International Conference on’, IEEE, pp. 261–

268.

Doungsa-ard, C., Dahal, K. P., Hossain, M. A. & Suwannasart, T. (2007), ‘An

automatic test data generation from uml state diagram using genetic algorithm.’.

References 49

ecomfe (2016a), ‘echart’.

URL: https://github.com/ecomfe/echarts/blob/master/test/lib/perlin.js

ecomfe (2016b), ‘echart’.

URL: https://github.com/ecomfe/echarts/blob/master/src/util/number.js

ecomfe (2016c), ‘echart’.

URL: https://github.com/ecomfe/echarts/blob/master/test/ut/spec/util/number.js

Fabbri, S. P. F., Delamaro, M. E., Maldonado, J. C. & Masiero, P. C. (1994),

Mutation analysis testing for finite state machines, in ‘Software Reliability En-

gineering, 1994. Proceedings., 5th International Symposium on’, IEEE, pp. 220–

229.

Fraser, G. & Wotawa, F. (2007), Mutant minimization for model-checker based

test-case generation, in ‘Testing: Academic and Industrial Conference Practice

and Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007’,

IEEE, pp. 161–168.

Jia, Y. & Harman, M. (2011), ‘An analysis and survey of the development of

mutation testing’, IEEE transactions on software engineering 37(5), 649–678.

Jing, C., Wang, Z., Shi, X., Yin, X. & Wu, J. (2008), Mutation testing of proto-

col messages based on extended ttcn-3, in ‘Advanced Information Networking

and Applications, 2008. AINA 2008. 22nd International Conference on’, IEEE,

pp. 667–674.

Last, M., Eyal, S. & Kandel, A. (2005), Effective black-box testing with genetic

algorithms, in ‘Haifa Verification Conference’, Springer, pp. 134–148.

Lee, S., Bai, X. & Chen, Y. (2008), Automatic mutation testing and simulation

on owl-s specified web services, in ‘Simulation Symposium, 2008. ANSS 2008.

41st Annual’, IEEE, pp. 149–156.

Lipton, R. J. (1971), ‘Fault diagnosis of computer programs’, Student Report,

Carnegie Mellon University .

References 50

Ma, Y.-S., Offutt, J. & Kwon, Y.-R. (2006), Mujava: a mutation system for java,

in ‘Proceedings of the 28th international conference on Software engineering’,

ACM, pp. 827–830.

Mantere, T. (2003), Automatic software testing by genetic algorithms, Universitas

Wasaensis.

Mathur, A. P. (2013), Foundations of software testing, 2/e, Pearson Education

India.

Mirshokraie, S., Mesbah, A. & Pattabiraman, K. (2013), Efficient javascript mu-

tation testing, in ‘Software Testing, Verification and Validation (ICST), 2013

IEEE Sixth International Conference on’, IEEE, pp. 74–83.

Mirshokraie, S., Mesbah, A. & Pattabiraman, K. (2015), ‘Guided mutation testing

for javascript web applications’, IEEE Transactions on Software Engineering

41(5), 429–444.

Nishiura, K., Maezawa, Y., Washizaki, H. & Honiden, S. (2013), Mutation analysis

for javascriptweb application testing., in ‘SEKE’, pp. 159–165.

Offutt, A. J. (1994), A practical system for mutation testing: help for the com-

mon programmer, in ‘Test Conference, 1994. Proceedings., International’, IEEE,

pp. 824–830.

Offutt, A. J. & Pan, J. (1997), ‘Automatically detecting equivalent mutants and

infeasible paths’, Software testing, verification and reliability 7(3), 165–192.

Offutt, A. J. & Untch, R. H. (2001), Mutation 2000: Uniting the orthogonal, in

‘Mutation testing for the new century’, Springer, pp. 34–44.

Offutt, J. (2002), ‘Quality attributes of web software applications’, IEEE software

19(2), 25–32.

Praphamontripong, U. & Offutt, J. (2010), Applying mutation testing to web

applications, in ‘Software Testing, Verification, and Validation Workshops

(ICSTW), 2010 Third International Conference on’, IEEE, pp. 132–141.

References 51

Rajappa, V., Biradar, A. & Panda, S. (2008), Efficient software test case gen-

eration using genetic algorithm based graph theory, in ‘Emerging Trends in

Engineering and Technology, 2008. ICETET’08. First International Conference

on’, IEEE, pp. 298–303.

Ribeiro, J. C. B., Rela, M. Z. & de Vega, F. F. (2008), A strategy for evaluating

feasible and unfeasible test cases for the evolutionary testing of object-oriented

software, in ‘Proceedings of the 3rd international workshop on Automation of

software test’, ACM, pp. 85–92.

Shahriar, H. & Zulkernine, M. (2008), Mutation-based testing of format string

bugs, in ‘High Assurance Systems Engineering Symposium, 2008. HASE 2008.

11th IEEE’, IEEE, pp. 229–238.

Sharma, C., Sabharwal, S. & Sibal, R. (2014), ‘A survey on software testing tech-

niques using genetic algorithm’, arXiv preprint arXiv:1411.1154 .

Sidhu, D. & Leung, T.-K. (1988), Fault coverage of protocol test methods, in ‘IN-

FOCOM’88. Networks: Evolution or Revolution, Proceedings. Seventh Annual

Joint Conference of the IEEE Computer and Communcations Societies, IEEE’,

IEEE, pp. 80–85.

Srivastava, P. R. & Kim, T.-h. (2009), ‘Application of genetic algorithm in soft-

ware testing’, International Journal of software Engineering and its Applications

3(4), 87–96.

Sthamer, H.-H. (1995), The automatic generation of software test data using ge-

netic algorithms, PhD thesis, University of Glamorgan.

Trakhtenbrot, M. (2007), New mutations for evaluation of specification and im-

plementation levels of adequacy in testing of statecharts models, in ‘Test-

ing: Academic and Industrial Conference Practice and Research Techniques-

MUTATION, 2007. TAICPART-MUTATION 2007’, IEEE, pp. 151–160.

Weyuker, E. J. (1982), ‘On testing non-testable programs’, The Computer Journal

25(4), 465–470.

References 52

Woodward, M. R. (1993), ‘Mutation testingits origin and evolution’, Information

and Software Technology 35(3), 163–169.

Xu, W., Offutt, J. & Luo, J. (2005), Testing web services by xml perturbation, in

‘Software Reliability Engineering, 2005. ISSRE 2005. 16th IEEE International

Symposium on’, IEEE, pp. 10–pp.

yangshun (2017), ‘tech-interview-handbook’.

URL: https://github.com/yangshun/tech-interview-

handbook/blob/master/utilities/javascript/mergeSort.js

Yoon, H., Choi, B. & Jeon, J.-O. (1998), Mutation-based inter-class testing, in

‘Software Engineering Conference, 1998. Proceedings. 1998 Asia Pacific’, IEEE,

pp. 174–181.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Overview
	1.2 Mutation Testing
	1.2.1 JavaScript Mutation Testing

	1.3 Problem Statement of Thesis
	1.4 Research Questions
	1.5 Research Objectives
	1.6 Research Methodology
	1.7 Research Contribution
	1.8 Thesis Organization

	2 Literature Review
	2.1 JavaScript Feature based mutation operators
	2.1.1 Event driven model
	2.1.2 Asynchronous communication
	2.1.3 DOM manipulation

	2.2 JavaScript specific mutation operators
	2.3 Critical Analysis
	2.3.1 Define evaluation criteria
	2.3.1.1 Tool
	2.3.1.2 JavaScript Features
	2.3.1.3 JavaScript Specific

	2.4 Gap Analysis

	3 Proposed Solution
	3.1 Proposed Mutation Operators
	3.1.1 Changing Variable Datatype
	3.1.1.1 Case 1: Changing Datatype String to Integer Datatype (STI)
	3.1.1.2 Case 2: Changing Datatype Integer to String Datatype (ITS)
	3.1.1.3 Case 3: Changing Datatype Character to Integer Datatype (CTI)

	3.1.2 Replacing Keyword â��varâ�� with â��letâ�� (VRL)
	3.1.3 Replacing Keyword â��letâ�� with â��varâ�� (LRV)
	3.1.4 Insert let keyword(ILK)
	3.1.5 Delete let keyword (DLK)

	4 Implementation
	4.1 Overview
	4.2 Mutant generation process
	4.2.1 Algorithm 1 description

	4.3 Analyzer Executor process
	4.3.1 Algorithm 2 description

	4.4 Tool Usage
	4.4.1 Mutant Generation Interface
	4.4.2 Analyzer Executor process

	5 Results and Discussion
	5.1 Evaluation Criteria
	5.1.1 Redundancy approach

	5.2 Case Studies
	5.3 Comparison

	6 Conclusion and Future Work
	Bibliography

